Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Acetylacetonato)agua(2,2',2"-terpyridine)chromium(III) bis(perchlorate) dihydrate hexamethylphosphoramide solvate

Nicoline Cloete* and Hendrik G. Visser

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300 South Africa

Correspondence e-mail: cloeten.sci@ufs.ac.za

Received 19 October 2007; accepted 6 November 2007

Key indicators: single-crystal X-ray study; T = 101 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.080; data-to-parameter ratio = 18.3.

The title compound, $[Cr(C_5H_8O_2)(C_{15}H_{11}N_3)(H_2O)](ClO_4)_2$. $2H_2O \cdot C_6H_{18}N_3OP$, adopts a distorted octahedral configuration about the Cr^{III} atom, mainly due to the rigidity of the terpyridyl ligand. The N-Cr-N bite angles are significantly distorted from 90° at 78.3 (1) and 78.6 (1)°. The Cr-N bond distances vary between 1.998 (1) and 2.068 (1) Å. The crystal packing is controlled by hydrogen bonding and π -stacking, with an interplanar separation of 3.263(2) Å.

Related literature

For similar complexes, see: Beran et al. (1970); Cloete et al. (2007); Einstein & Penfold (1966, 1968); Liu & Verkade (1998); Morosin (1965); Shiren & Tanaka (2002); Visser et al. (2005); Wickramasinghe et al. (1982). For the synthesis of the starting complex mer-[CrCl₃(terpy)], see: Cloete et al. (2007).

Experimental

Crystal data

 $[Cr(C_5H_7O_2)(C_{15}H_{11}N_3)(H_2O)]$ - $(ClO_4)_2 \cdot 2(H_2O) \cdot C_6H_{18}N_3OP$ $M_r = 816.53$ Monoclinic, $P2_1/n$ a = 13.2524 (4) Å b = 13.5607 (4) Å c = 19.7271 (6) Å

 $\beta = 95.588 \ (1)^{\circ}$ V = 3528.35 (18) Å³ Z = 4Mo Ka radiation $\mu = 0.59 \text{ mm}^-$ T = 101 (2) K $0.26 \times 0.24 \times 0.19 \text{ mm}$ $R_{\rm int} = 0.032$

61605 measured reflections

8750 independent reflections

7534 reflections with $I > 2\sigma(I)$

Data collection

```
Bruker Kappa APEXII
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2004)
  T_{\min} = 0.850, T_{\max} = 0.899
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	H atoms treated by a mixture of
$vR(F^2) = 0.08$	independent and constrained
S = 1.02	refinement
3750 reflections	$\Delta \rho_{\rm max} = 0.4 \ {\rm e} \ {\rm \AA}^{-3}$
77 parameters	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cr1-O2	1.9268 (10)	Cr1-N2	1.9976 (12)
Cr1-O1	1.9356 (10)	Cr1-N1	2.0547 (12)
Cr1-O3	1.9684 (11)	Cr1-N3	2.0676 (12)
O2-Cr1-O1	91.05 (4)	N2-Cr1-N1	78.55 (5)
O2-Cr1-O3	87.51 (5)	N2-Cr1-N3	78.26 (5)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O14−H4A···O10	0.86 (3)	2.00 (3)	2.838 (2)	163 (3)
$O14 - H4B \cdots O8^{i}$	0.80 (3)	2.09 (3)	2.861 (2)	162 (2)
O3−H45···O13	0.72(2)	1.93 (2)	2.6461 (17)	171 (2)
$O13-H5A\cdots O7^{ii}$	0.75 (3)	2.14 (3)	2.8830 (18)	172 (3)
$O13 - H5B \cdots O14^{iii}$	0.89 (3)	1.84 (3)	2.7356 (19)	177 (2)
$O3-H46\cdots O12^{iv}$	0.87 (3)	1.63 (3)	2.4989 (16)	175 (3)
		1 1	1 1	1

Symmetry codes: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2};$ (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2};$ (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) x, y, z - 1.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial assistance from the South African National Research Foundation (NRF), the Research Fund of the University of the Free State and SASOL is gratefully acknowledged. Part of this material is based on work supported by the South African National Research Foundation (GUN 2038915). Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2041).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Beran, G., Carty, A. J., Patel, H. A. & Palenik, G. J. (1970). Chem. Commun. pp. 222–223.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Release 3.0c. Crystal Impact GbR, Bonn, Germany.
- Bruker (2004). SADABS (Version 2004/1) and SAINT-Plus (Version 7.12 including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.

- Cloete, N., Visser, H. G. & Roodt, A. (2007). Acta Cryst. E63, m45-m47.
- Einstein, F. W. B. & Penfold, B. R. (1966). Acta Cryst. 20, 924–926.
- Einstein, F. W. B. & Penfold, B. R. (1968). J. Chem. Soc. A, pp. 3019-3024.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Liu, X. & Verkade, J. G. (1998). Inorg. Chem. 37, 5189-5197.
- Morosin, B. (1965). Acta Cryst. 19, 131-137.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Shiren, K. & Tanaka, K. (2002). Inorg. Chem. 41, 5912-5919.
- Visser, H. G., Purcell, W., Cloete, N. & Muller, A. (2005). Acta Cryst. E61, m1668-m1670.
- Wickramasinghe, W. A., Bird, P. H. & Serpone, N. (1982). Inorg. Chem. 21, 2694–2698.

Acta Cryst. (2007). E63, m3069-m3070 [doi:10.1107/S1600536807056176]

(Acetylacetonato)aqua(2,2',2''-terpyridine)chromium(III) bis(perchlorate) dihydrate hexamethylphosphoramide solvate

N. Cloete and H. G. Visser

Comment

The title compound, $[Cr(acac)(H_2O)(terpy)] \cdot 2(ClO_4) \cdot 2(H_2O) \cdot (PON_3C_6H_{18})$, (terpy = 2,2',2"-terpyridine and acac = acetyl acetonoate), (I), contains a chromium(III) atom which is octahedrally surrounded by three N atoms (N1, N2 and N3) of the terpy ligand, two O atoms from the acac ligand and another O atom from the coordinated H₂O molecule (Figure 1). The Cr-atom in (I) adopts a distorted octahedral geometry where the mean intraligand N—Cr—N bond angle is 78.4 (1)°, similar to bond angles in *mer*-[CrCl₃(terpy)] (Cloete *et al.*, 2007). The rigidity of the terpyridyl group necessatates the above mentioned bite angles to be much smaller than 90°. The O1—Cr—O2 bond angle is 91.1 (1)° which is equal to the average intramolecular O—Cr—O bond angle reported in [Cr(acac)₃ (Morosin, 1965)].

The mean Cr—N(peripheral) distance of 2.062 (1) Å is slightly longer than the Cr—N(central) bond distance (1.998 (1) Å). This difference of approximately 0.08 Å has also been observed in *mer*-[Cr(terpy)₂]³⁺ (Wickramasinghe *et al.*, 1982) and in the metallo-mono(terpy) complexes *mer*-[CrCl₃(terpy)] (Cloete *et al.*, 2007), [*mer*-[GaCl₂(terpy)] (0.078 Å) (Beran *et al.*, 1970), *mer*-[ZnCl₂(terpy)] (0.12 Å) (Einstein *et al.*, 1966) and *mer*-[(CH₃)₂SnCl(terpy)]⁺ (0.08 Å) (Einstein *et al.*, 1968). The C—C bond distances for the acac ligand range between 1.384 (2) and 1.496 Å. These bond lengths are consistent with the partial double bond character of the acetylacetonate ligand in which the electrons are delocalized in the chelate ring.

The other bonds in complex (I) fall within the same range as the corresponding complexes (Beran *et al.*, 1970; Cloete *et al.*, 2007; Einstein *et al.*, 1966; Einstein *et al.*, 1968; Liu & Verkade, 1998; Shiren & Tanaka, 2002 and Visser *et al.*, 2005).

The [Cr(acac)(H₂O)(terpy)] cations are packed diagonally across the *ac* plane with the perchlorate anions, hexamethylphosphoramide and water molecules filling the spaces in between (Fig. 2). The molecules within the structure are linked by an extensive network of intermolecular hydrogen bonds and non-conventinal H-bonds of the types C—H···O and C—H···N. The crystal packing also seems to be influenced by π - π stacking interactions between the terpy moieties (Fig. 2) with an interplanar separation of 3.263 (2) Å.

Experimental

[Cr(terpy)Cl₃] (Cloete *et al.*, 2007) (1.5 g, 3.2 mmole) was dissolved in methanol (300 ml). AgClO₄ (0.662 g, 3.2 mmole) was added to the methanol solution and stirred at room temperature for 12 h. The solution was filtered. NaOH (0.13 g, 3.2 mmole) and acetylacetone (3.3 ml 3.2 mmole) was added to the filtrate. Reaction mixture was stirred for another 12 h after which the solution was acidified with HClO₄ (5 ml, 60% v/v) and stirred for two hours. H₂O (100 ml) was added and the solution was left to slowly evaporate at room temperature. Single red cystals were obtained after 1 day which were suitable for X-ray crystallography. Yield: 0.199 g (76.1%)

Refinement

The aromatic, methylene and methyl (hexamethylphosphoramide molecule) hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(C)$ and $1.2U_{eq}(C)$, respectively. The hydrogen atoms on the methyl groups of the acac ligand were constrained to ride on their parent atoms and idealized as rotating CH₃ groups. Aqua H atoms were located in a difference Fourier map and then refined isotropically. The H atom on the C3 atom of the acac group was located in a difference Fourier map and then refined isotropically. The maximum and the minimum residual electron density are located 0.69 Å from N6 and 0.69 Å from Cr1, respectively, indicating no physical meaning.

Figures

Fig. 1. : View of (I) with 50% probability displacement ellipsoids; H-atoms were omitted for clarity.

Fig. 2. : View of (I) along the *b* axis, illustrating selected H-bonds and π stacking. i) (-*x*, 2 - *y*, -*z*) ii) (*x*, *y*, -1 + *z*) iii) (3/2 - *x*, 1/2 + *y*, 1/2 - *z*)

(Acetylacetonato)aqua(2,2',2''-terpyridine)chromium(III) bis(perchlorate) dihydrate hexamethylphosphoramide solvate

Crystal data

 $[Cr(C_5H_7O_2)(C_{15}H_{11}N_3)(H_2O_1)](ClO_4)_2 \cdot 2(H_2O) \cdot C_6H_1 + N_{10}OP1700$

	$D_{\rm x} = 1.537 {\rm ~Mg~m}^{-3}$
$M_r = 816.53$	$D_{\rm m} = 1.54 {\rm ~Mg~m}^{-3}$
	$D_{\rm m}$ measured by not measured
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 9416 reflections
a = 13.2524 (4) Å	$\theta = 2.5 - 28.3^{\circ}$
b = 13.5607 (4) Å	$\mu = 0.59 \text{ mm}^{-1}$
c = 19.7271 (6) Å	T = 101 (2) K
$\beta = 95.588 \ (1)^{\circ}$	Cuboid, red

 $V = 3528.35 (18) \text{ Å}^3$ Z = 4

Data	coli	lection
Duiu	con	cenon

Bruker X8 APEXII 4K Kappa CCD diffractometer	7534 reflections with $I > 2\sigma(I)$
T = 101(2) K	$R_{\rm int} = 0.032$
ω and ϕ scans	$\theta_{\text{max}} = 28.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2004)	$\theta_{\min} = 1.8^{\circ}$
$T_{\min} = 0.850, \ T_{\max} = 0.899$	$h = -17 \rightarrow 17$
61605 measured reflections	$k = -18 \rightarrow 18$
8750 independent reflections	$l = -24 \rightarrow 26$

Refinement

Refinement on F^2 H atoms treated by a mixture of
independent and constrained refinementLeast-squares matrix: full $w = 1/[\sigma^2(F_o^2) + (0.0529P)^2 + 4.3676P]$
where $P = (F_o^2 + 2F_c^2)/3$ $R[F^2 > 2\sigma(F^2)] = 0.030$ $(\Delta/\sigma)_{max} = 0.001$ $wR(F^2) = 0.08$ $\Delta\rho_{max} = 0.4$ e Å⁻³S = 1.02 $\Delta\rho_{min} = -0.42$ e Å⁻³8750 reflectionsExtinction correction: none477 parameters ω

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $0.26 \times 0.24 \times 0.19 \text{ mm}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cr1	0.126363 (16)	0.768594 (16)	0.120659 (11)	0.01100 (6)
Cl1	0.19255 (3)	0.33434 (3)	0.091107 (18)	0.01726 (8)
Cl2	0.69017 (3)	0.49729 (3)	0.254242 (19)	0.02045 (9)
01	-0.02022 (8)	0.76518 (7)	0.11518 (5)	0.0145 (2)
02	0.13586 (8)	0.67037 (8)	0.19157 (5)	0.0160 (2)
N2	0.12138 (9)	0.87546 (9)	0.05072 (6)	0.0127 (2)
N3	0.12156 (9)	0.68837 (9)	0.03127 (6)	0.0137 (2)
N1	0.12924 (9)	0.89261 (9)	0.18065 (6)	0.0141 (2)
O6	0.24232 (9)	0.25598 (9)	0.13100 (6)	0.0260 (3)
P1	0.43832 (3)	0.77800 (3)	0.995845 (19)	0.01538 (8)
O12	0.34383 (8)	0.82187 (9)	1.01873 (6)	0.0222 (2)

N4	0.42298 (10)	0.75554 (10)	0.91434 (7)	0.0199 (3)
N5	0.47021 (10)	0.66964 (10)	1.02906 (7)	0.0203 (3)
013	0.39785 (10)	0.80887 (10)	0.23635 (7)	0.0252 (3)
O14	0.89534 (10)	0.29744 (12)	0.25721 (7)	0.0289 (3)
N6	0.53124 (10)	0.85556 (10)	1.01509 (7)	0.0206 (3)
C7	0.35895 (13)	0.81940 (15)	0.86919 (9)	0.0281 (4)
H7A	0.3191	0.8608	0.8957	0.042*
H7B	0.3148	0.7798	0.8388	0.042*
H7C	0.4007	0.8597	0.8433	0.042*
C8	0.39334 (13)	0.59136 (13)	1.02112 (10)	0.0288 (4)
H8A	0.3511	0.601	0.9793	0.043*
H8B	0.3524	0.5935	1.0587	0.043*
H8C	0.4262	0.5284	1.0202	0.043*
C9	0.53796 (14)	0.66036 (14)	1.09146 (9)	0.0299 (4)
H9A	0.5865	0.7131	1.0939	0.045*
H9B	0.5728	0.5983	1.0915	0.045*
H9C	0.4992	0.6635	1.1301	0.045*
C17	0.53491 (16)	0.91838 (14)	1.07527 (9)	0.0324 (4)
H17A	0.4708	0.9158	1.0941	0.049*
H17B	0.5489	0.9851	1.0628	0.049*
H17C	0.5874	0.8956	1.1086	0.049*
C6	0.48678 (14)	0.68963 (14)	0.87875 (9)	0.0298 (4)
H6A	0.5269	0.6497	0.9113	0.045*
H6B	0.5307	0.7278	0.853	0.045*
H6C	0.4448	0.6479	0.8485	0.045*
C10	0.62493 (13)	0.85386 (15)	0.98238 (10)	0.0298 (4)
H10A	0.6169	0.8114	0.9433	0.045*
H10B	0.679	0.8297	1.0139	0.045*
H10C	0.6407	0.9194	0.9683	0.045*
O3	0.27545 (8)	0.76660 (8)	0.12612 (6)	0.0162 (2)
H5A	0.3840 (19)	0.8279 (19)	0.2696 (14)	0.047 (8)*
H5B	0.465 (2)	0.8070 (18)	0.2371 (12)	0.045 (7)*
H4B	0.8704 (19)	0.244 (2)	0.2575 (13)	0.045 (7)*
H4A	0.852 (2)	0.342 (2)	0.2664 (16)	0.078 (10)*
H45	0.3038 (17)	0.7814 (16)	0.1576 (12)	0.030 (6)*
H46	0.3014 (19)	0.7886 (18)	0.0903 (14)	0.050 (7)*
C31	0.11945 (11)	0.74333 (11)	-0.02662 (7)	0.0144 (3)
O4	0.11986 (9)	0.29300 (9)	0.04007 (6)	0.0284 (3)
O5	0.26586 (9)	0.39128 (9)	0.05905 (6)	0.0263 (3)
C25	0.12033 (10)	0.85093 (11)	-0.01524 (7)	0.0145 (3)
C22	0.12551 (11)	1.04583 (11)	0.02463 (8)	0.0182 (3)
H22	0.128	1.1113	0.0387	0.022*
C34	0.11710 (12)	0.54218 (12)	-0.03595 (8)	0.0214 (3)
H34	0.1158	0.4737	-0.0382	0.026*
C13	0.12692 (13)	1.06842 (12)	0.25091 (9)	0.0252 (4)
H13	0.1256	1.1276	0.2747	0.03*
O7	0.14090 (9)	0.39758 (9)	0.13592 (6)	0.0250 (3)
C15	0.12453 (11)	0.97999 (11)	0.14630 (8)	0.0154 (3)
C24	0.12035 (11)	0.92365 (12)	-0.06455 (8)	0.0177 (3)

H24	0.1184	0.9073	-0.1104	0.021*
C14	0.12233 (12)	1.06858 (11)	0.18027 (9)	0.0212 (3)
H14	0.1178	1.1277	0.1563	0.025*
C12	0.13348 (13)	0.98032 (12)	0.28550 (9)	0.0233 (3)
H12	0.1375	0.9791	0.3328	0.028*
C2	0.06322 (11)	0.62566 (11)	0.21764 (7)	0.0153 (3)
C4	-0.07570 (11)	0.70747 (11)	0.14682 (7)	0.0148 (3)
C3	-0.03864 (11)	0.63886 (11)	0.19608 (8)	0.0175 (3)
Н3	-0.0854	0.5995	0.2157	0.021*
C21	0.12382 (10)	0.96977 (11)	0.07163 (8)	0.0146 (3)
C5	-0.18745 (12)	0.71765 (12)	0.12873 (8)	0.0213 (3)
H5C	-0.2025	0.7109	0.0804	0.032*
H5D	-0.2093	0.7813	0.1428	0.032*
H5E	-0.2223	0.6672	0.1514	0.032*
C32	0.11698 (11)	0.69970 (12)	-0.08987 (8)	0.0193 (3)
H32	0.1161	0.7382	-0.1289	0.023*
C33	0.11581 (12)	0.59778 (13)	-0.09459 (8)	0.0228 (3)
H33	0.1142	0.5671	-0.1369	0.027*
O8	0.67088 (11)	0.59924 (9)	0.26969 (7)	0.0355 (3)
C35	0.12030 (11)	0.58980 (11)	0.02628 (8)	0.0173 (3)
H35	0.1216	0.5523	0.0658	0.021*
C11	0.13407 (11)	0.89343 (12)	0.24870 (8)	0.0183 (3)
H11	0.138	0.8337	0.272	0.022*
09	0.69011 (12)	0.48494 (11)	0.18257 (7)	0.0400 (3)
O11	0.61525 (11)	0.43677 (10)	0.28030 (7)	0.0383 (3)
O10	0.78831 (11)	0.47091 (11)	0.28708 (9)	0.0482 (4)
C23	0.12333 (11)	1.02168 (12)	-0.04377 (8)	0.0196 (3)
H23	0.1239	1.0716	-0.0761	0.024*
C1	0.09592 (13)	0.55771 (12)	0.27532 (8)	0.0232 (3)
H1A	0.1417	0.5093	0.2604	0.035*
H1B	0.0376	0.5253	0.2903	0.035*
H1C	0.1294	0.5949	0.3123	0.035*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr1	0.01239 (11)	0.00971 (11)	0.01106 (11)	0.00019 (8)	0.00199 (8)	0.00174 (8)
Cl1	0.01874 (17)	0.01400 (16)	0.01917 (18)	-0.00186 (13)	0.00244 (13)	0.00061 (13)
Cl2	0.02155 (18)	0.01963 (18)	0.01980 (18)	-0.00030 (14)	0.00005 (14)	0.00105 (14)
O1	0.0145 (5)	0.0144 (5)	0.0149 (5)	-0.0007 (4)	0.0027 (4)	0.0021 (4)
O2	0.0179 (5)	0.0144 (5)	0.0159 (5)	0.0002 (4)	0.0023 (4)	0.0037 (4)
N2	0.0106 (5)	0.0127 (6)	0.0150 (6)	0.0003 (4)	0.0024 (4)	0.0027 (5)
N3	0.0126 (6)	0.0140 (6)	0.0147 (6)	0.0000 (4)	0.0017 (4)	0.0011 (5)
N1	0.0134 (6)	0.0129 (6)	0.0161 (6)	0.0004 (4)	0.0027 (4)	0.0001 (5)
O6	0.0289 (6)	0.0195 (6)	0.0300 (6)	0.0038 (5)	0.0047 (5)	0.0084 (5)
P1	0.01319 (17)	0.01865 (19)	0.01444 (18)	0.00062 (14)	0.00207 (13)	0.00170 (14)
O12	0.0190 (5)	0.0292 (6)	0.0191 (6)	0.0052 (5)	0.0065 (4)	0.0047 (5)
N4	0.0168 (6)	0.0264 (7)	0.0165 (6)	0.0026 (5)	0.0008 (5)	-0.0011 (5)

N5	0.0177 (6)	0.0196 (7)	0.0229 (7)	-0.0013 (5)	-0.0013 (5)	0.0035 (5)
013	0.0238 (7)	0.0298 (7)	0.0217 (6)	-0.0018 (5)	0.0006 (5)	-0.0059 (5)
O14	0.0271 (7)	0.0302 (7)	0.0295 (7)	-0.0027 (6)	0.0024 (5)	-0.0020 (6)
N6	0.0203 (6)	0.0215 (7)	0.0199 (6)	-0.0036 (5)	0.0015 (5)	-0.0006 (5)
C7	0.0242 (8)	0.0402 (10)	0.0193 (8)	0.0053 (7)	-0.0006 (6)	0.0048 (7)
C8	0.0249 (9)	0.0204 (8)	0.0404 (10)	-0.0033 (7)	0.0002 (7)	0.0049 (7)
C9	0.0309 (9)	0.0274 (9)	0.0294 (9)	0.0016 (7)	-0.0074 (7)	0.0079 (7)
C17	0.0436 (11)	0.0278 (9)	0.0245 (9)	-0.0035 (8)	-0.0041 (8)	-0.0047 (7)
C6	0.0297 (9)	0.0349 (10)	0.0249 (9)	0.0043 (8)	0.0036 (7)	-0.0109 (8)
C10	0.0177 (8)	0.0378 (10)	0.0339 (10)	-0.0062 (7)	0.0020 (7)	0.0026 (8)
O3	0.0148 (5)	0.0207 (6)	0.0132 (5)	0.0002 (4)	0.0017 (4)	0.0014 (4)
C31	0.0117 (6)	0.0169 (7)	0.0148 (7)	0.0009 (5)	0.0020 (5)	0.0021 (6)
O4	0.0258 (6)	0.0299 (7)	0.0285 (6)	-0.0049 (5)	-0.0022 (5)	-0.0083 (5)
05	0.0258 (6)	0.0238 (6)	0.0302 (6)	-0.0049 (5)	0.0081 (5)	0.0067 (5)
C25	0.0098 (6)	0.0187 (7)	0.0153 (7)	0.0010 (5)	0.0023 (5)	0.0034 (6)
C22	0.0134 (7)	0.0134 (7)	0.0280 (8)	0.0000 (5)	0.0027 (6)	0.0052 (6)
C34	0.0225 (8)	0.0169 (7)	0.0246 (8)	0.0004 (6)	0.0015 (6)	-0.0055 (6)
C13	0.0270 (8)	0.0188 (8)	0.0299 (9)	-0.0021 (6)	0.0033 (7)	-0.0099 (7)
07	0.0334 (7)	0.0190 (6)	0.0234 (6)	0.0038 (5)	0.0071 (5)	-0.0017 (5)
C15	0.0121 (6)	0.0135 (7)	0.0205 (7)	-0.0010 (5)	0.0020 (5)	0.0002 (6)
C24	0.0125 (7)	0.0246 (8)	0.0162 (7)	0.0019 (6)	0.0026 (5)	0.0062 (6)
C14	0.0215 (8)	0.0130 (7)	0.0293 (9)	-0.0015 (6)	0.0041 (6)	-0.0013 (6)
C12	0.0251 (8)	0.0254 (8)	0.0193 (8)	-0.0003 (7)	0.0023 (6)	-0.0055 (6)
C2	0.0234 (7)	0.0106 (7)	0.0126 (7)	-0.0005 (5)	0.0043 (5)	-0.0008 (5)
C4	0.0174 (7)	0.0143 (7)	0.0132 (7)	-0.0018 (5)	0.0037 (5)	-0.0031 (5)
C3	0.0205 (7)	0.0155 (7)	0.0173 (7)	-0.0042 (6)	0.0062 (6)	0.0021 (6)
C21	0.0106 (6)	0.0127 (7)	0.0207 (7)	-0.0004 (5)	0.0029 (5)	0.0026 (6)
C5	0.0160 (7)	0.0246 (8)	0.0235 (8)	-0.0020 (6)	0.0037 (6)	0.0015 (6)
C32	0.0176 (7)	0.0258 (8)	0.0145 (7)	0.0000 (6)	0.0014 (5)	0.0002 (6)
C33	0.0219 (8)	0.0285 (9)	0.0179 (7)	0.0001 (7)	0.0014 (6)	-0.0076 (6)
08	0.0512 (8)	0.0200 (6)	0.0347 (7)	0.0055 (6)	0.0011 (6)	0.0000 (5)
C35	0.0177 (7)	0.0152 (7)	0.0189 (7)	0.0008 (6)	0.0018 (6)	0.0010 (6)
C11	0.0192 (7)	0.0190 (7)	0.0168 (7)	0.0001 (6)	0.0022 (6)	-0.0007 (6)
O9	0.0579 (9)	0.0408 (8)	0.0224 (7)	-0.0050 (7)	0.0103 (6)	-0.0030 (6)
011	0.0415 (8)	0.0369 (8)	0.0384 (8)	-0.0133 (6)	0.0126 (6)	0.0047 (6)
O10	0.0316 (7)	0.0369 (8)	0.0707 (11)	0.0079 (6)	-0.0222 (7)	-0.0106 (8)
C23	0.0146 (7)	0.0200 (8)	0.0245 (8)	0.0001 (6)	0.0034 (6)	0.0121 (6)
C1	0.0283 (8)	0.0210 (8)	0.0208 (8)	0.0025 (6)	0.0049 (6)	0.0086 (6)

Geometric parameters (Å, °)

Cr1—O2	1.9268 (10)	С17—Н17В	0.96
Cr1—O1	1.9356 (10)	С17—Н17С	0.96
Cr1—O3	1.9684 (11)	С6—Н6А	0.96
Cr1—N2	1.9976 (12)	С6—Н6В	0.96
Cr1—N1	2.0547 (12)	С6—Н6С	0.96
Cr1—N3	2.0676 (12)	C10—H10A	0.96
Cl1—O5	1.4352 (12)	C10—H10B	0.96
Cl1—O4	1.4376 (12)	C10—H10C	0.96

Cl1—O6	1.4430 (12)	O3—H45	0.72 (2)
Cl1—07	1.4503 (12)	O3—H46	0.87 (3)
Cl2—O11	1.4222 (13)	C31—C32	1.379 (2)
Cl2—09	1.4236 (14)	C31—C25	1.476 (2)
Cl2—O10	1.4405 (14)	C25—C24	1.385 (2)
Cl2—O8	1.4439 (13)	C22—C23	1.386 (2)
O1—C4	1.2776 (18)	C22—C21	1.389 (2)
O2—C2	1.2864 (18)	C22—H22	0.93
N2—C25	1.3418 (19)	C34—C33	1.380 (2)
N2—C21	1.3431 (19)	C34—C35	1.384 (2)
N3—C35	1.3403 (19)	С34—Н34	0.93
N3—C31	1.3617 (19)	C13—C12	1.374 (2)
N1—C11	1.3376 (19)	C13—C14	1.389 (2)
N1—C15	1.3635 (19)	С13—Н13	0.93
P1—O12	1.4953 (11)	C15—C14	1.377 (2)
P1—N4	1.6297 (13)	C15—C21	1.479 (2)
P1—N6	1.6356 (14)	C24—C23	1.391 (2)
P1—N5	1.6473 (14)	C24—H24	0.93
N4—C7	1.455 (2)	C14—H14	0.93
N4—C6	1.457 (2)	C12—C11	1.384 (2)
N5—C9	1.457 (2)	C12—H12	0.93
N5—C8	1.469 (2)	C2—C3	1.387 (2)
O13—H5A	0.75 (3)	C2—C1	1.495 (2)
O13—H5B	0.89 (3)	C4—C3	1.399 (2)
O14—H4B	0.80 (3)	C4—C5	1.496 (2)
O14—H4A	0.86 (3)	С3—Н3	0.93
N6—C10	1.454 (2)	С5—Н5С	0.96
N6—C17	1.458 (2)	C5—H5D	0.96
C7—H7A	0.96	С5—Н5Е	0.96
С7—Н7В	0.96	C32—C33	1.385 (2)
С7—Н7С	0.96	С32—Н32	0.93
C8—H8A	0.96	С33—Н33	0.93
C8—H8B	0.96	С35—Н35	0.93
C8—H8C	0.96	C11—H11	0.93
С9—Н9А	0.96	С23—Н23	0.93
С9—Н9В	0.96	C1—H1A	0.96
С9—Н9С	0.96	C1—H1B	0.96
C17—H17A	0.96	C1—H1C	0.96
O2—Cr1—O1	91.05 (4)	N4—C6—H6B	109.5
O2—Cr1—O3	87.51 (5)	Н6А—С6—Н6В	109.5
O1—Cr1—O3	177.84 (5)	N4—C6—H6C	109.5
O2—Cr1—N2	176.74 (5)	Н6А—С6—Н6С	109.5
O1—Cr1—N2	90.76 (4)	H6B—C6—H6C	109.5
O3—Cr1—N2	90.76 (5)	N6—C10—H10A	109.5
O2—Cr1—N1	98.71 (5)	N6—C10—H10B	109.5
O1—Cr1—N1	90.80 (5)	H10A—C10—H10B	109.5
O3—Cr1—N1	91.00 (5)	N6—C10—H10C	109.5
N2—Cr1—N1	78.55 (5)	H10A—C10—H10C	109.5
O2-Cr1-N3	104.47 (5)	H10B-C10-H10C	109.5

O1—Cr1—N3	89.56 (5)	Cr1—O3—H45	118.6 (17)
O3—Cr1—N3	89.24 (5)	Cr1—O3—H46	115.2 (16)
N2—Cr1—N3	78.26 (5)	H45—O3—H46	113 (2)
N1—Cr1—N3	156.81 (5)	N3—C31—C32	121.40 (14)
O5—Cl1—O4	109.71 (8)	N3—C31—C25	114.47 (13)
O5—Cl1—O6	110.08 (7)	C32—C31—C25	124.13 (14)
O4—Cl1—O6	109.53 (8)	N2—C25—C24	120.25 (14)
O5—Cl1—O7	109.29 (7)	N2—C25—C31	113.06 (12)
04—Cl1—07	109.49 (7)	C24—C25—C31	126.68 (14)
O6—Cl1—O7	108.72 (7)	C23—C22—C21	118.31 (14)
O11—Cl2—O9	110.99 (9)	С23—С22—Н22	120.8
O11—Cl2—O10	109.01 (10)	C21—C22—H22	120.8
09-Cl2-O10	109.30 (10)	C33—C34—C35	119.05 (15)
$011 - Cl^2 - 08$	109 39 (9)	C33—C34—H34	120.5
09-012-08	109.83 (9)	C35—C34—H34	120.5
$010-Cl^2-08$	108 27 (8)	C12-C13-C14	119 61 (15)
C4-O1-Cr1	127 56 (9)	C12—C13—H13	120.2
$C^2 - C^2 - Cr^1$	127.30 (9)	C12 - C13 - H13	120.2
$C_{2} = C_{2} = C_{1}$	120.15 ())	N1-C15-C14	121.21 (14)
$C_{25} = N_{2} = C_{21}$	119 10 (10)	N1-C15-C21	121.21(11) 114.15(13)
$C_{23} = N_2 = C_{11}$	118 71 (10)	$C_{14} - C_{15} - C_{21}$	124 63 (14)
$C_{25} = N_{3} = C_{31}$	119.02 (13)	$C_{25} - C_{24} - C_{23}$	118 39 (14)
$C_{35} = N_{3} = C_{11}$	125.91 (10)	$C_{25} = C_{24} = C_{25}$	120.8
C_{31} N3 C_{r1}	125.91(10) 115.07(10)	$C_{23} = C_{24} = H_{24}$	120.8
C_{11} N1 $-C_{15}$	119.14 (13)	$C_{15} - C_{14} - C_{13}$	119.07 (15)
C_{11} N1 C_{11}	125 54 (10)	$C_{15} - C_{14} - H_{14}$	120.5
C15-N1-Cr1	115 32 (10)	C13 - C14 - H14	120.5
012—P1—N4	110.15(7)	C13-C12-C11	118 86 (15)
012—P1—N6	107.93 (7)	C13 - C12 - H12	120.6
N4_P1_N6	111 59 (7)	C11 - C12 - H12	120.6
012—P1—N5	115 13 (7)	02 - 02 - 03	124.09(13)
N4_P1_N5	103.19(7)	02 - 02 - 03	114.96 (13)
N6_P1_N5	109.19(7) 108.85(7)	$C_{2}^{2} = C_{2}^{2} = C_{1}^{2}$	120.94 (14)
C7 - N4 - C6	113 68 (13)	01 - C4 - C3	120.94(14) 124.53(13)
C7N4P1	120 14 (11)	01 - 04 - 05	124.55(13) 115(50(13))
C_{6} N/ P_{1}	120.14(11) 124.59(11)	C_{3}^{-} C_{4}^{-} C_{5}^{-}	119.97 (13)
$C_{0} = N_{5} = C_{8}$	124.59(11) 113.07(14)	$C_{2}^{2} - C_{3}^{2} - C_{4}^{4}$	124 34 (14)
C9_N5_P1	121 76 (12)	$C_2 = C_3 = C_4$	117.8
C8_N5_P1	116.98 (11)	$C_2 = C_3 = H_3$	117.8
H5A_013_H5B	109 (2)	$N_{2} = C_{21} = C_{22}$	120 24 (14)
HAB_014_HAA	109(2) 110(3)	$N_2 = C_{21} = C_{15}$	120.24(14) 113 14(12)
C10 N6 $C17$	110(5) 114 10(14)	$C^{22} = C^{21} = C^{15}$	126.62 (14)
C10_N6_P1	122 88 (12)	$C_{22} = C_{21} = C_{13}$	109 5
C17—N6—P1	121.96 (12)	C4—C5—H5D	109.5
N4—C7—H7A	109.5	H5C-C5-H5D	109.5
N4—C7—H7B	109.5	C4-C5-H5F	109.5
H7A - C7 - H7B	109.5	HSC-C5-HSF	109.5
N4—C7—H7C	109.5	H5D—C5—H5E	109.5
H7A - C7 - H7C	109.5	$C_{31} - C_{32} - C_{33}$	119 22 (15)

H7B—C7—H7C	109.5	C31—C32—H32	120.4
N5—C8—H8A	109.5	С33—С32—Н32	120.4
N5—C8—H8B	109.5	C34—C33—C32	119.33 (15)
H8A—C8—H8B	109.5	С34—С33—Н33	120.3
N5—C8—H8C	109.5	С32—С33—Н33	120.3
H8A—C8—H8C	109.5	N3—C35—C34	121.97 (14)
H8B—C8—H8C	109.5	N3—C35—H35	119
N5—C9—H9A	109.5	С34—С35—Н35	119
N5—C9—H9B	109.5	N1-C11-C12	122.09 (15)
Н9А—С9—Н9В	109.5	N1—C11—H11	119
N5—C9—H9C	109.5	C12-C11-H11	119
Н9А—С9—Н9С	109.5	C22—C23—C24	120.68 (14)
Н9В—С9—Н9С	109.5	С22—С23—Н23	119.7
N6—C17—H17A	109.5	С24—С23—Н23	119.7
N6—C17—H17B	109.5	C2—C1—H1A	109.5
H17A—C17—H17B	109.5	C2—C1—H1B	109.5
N6—C17—H17C	109.5	H1A—C1—H1B	109.5
H17A—C17—H17C	109.5	C2—C1—H1C	109.5
H17B—C17—H17C	109.5	H1A—C1—H1C	109.5
N4—C6—H6A	109.5	H1B—C1—H1C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O14—H4A…O10	0.86 (3)	2.00 (3)	2.838 (2)	163 (3)
O14—H4B···O8 ⁱ	0.80 (3)	2.09 (3)	2.861 (2)	162 (2)
O3—H45…O13	0.72 (2)	1.93 (2)	2.6461 (17)	171 (2)
C1—H1A···O13 ⁱⁱ	0.96	2.77	3.384 (2)	123
C6—H6A…N5	0.96	2.52	3.007 (2)	111
С7—Н7А…О12	0.96	2.47	2.976 (2)	113
C9—H9A…N6	0.96	2.54	3.043 (2)	113
C13—H13…O13 ⁱⁱⁱ	0.93	2.48	3.289 (2)	145
O14—H4A…O10	0.86 (3)	2.00 (3)	2.838 (2)	163 (3)
O14—H4B···O8 ⁱ	0.80 (3)	2.09 (3)	2.861 (2)	162 (2)
O3—H45…O13	0.72 (2)	1.93 (2)	2.6461 (17)	171 (2)
C1—H1A···O13 ⁱⁱ	0.96	2.77	3.384 (2)	123
C6—H6A…N5	0.96	2.52	3.007 (2)	111
С7—Н7А…О12	0.96	2.47	2.976 (2)	113
C9—H9A…N6	0.96	2.54	3.043 (2)	113
C13—H13…O13 ⁱⁱⁱ	0.93	2.48	3.289 (2)	145
C17—H17A…O12	0.96	2.49	2.970 (2)	111
013—H5A…O7 ⁱⁱⁱ	0.75 (3)	2.14 (3)	2.8830 (18)	172 (3)
013—H5B····O14 ^{iv}	0.89 (3)	1.84 (3)	2.7356 (19)	177 (2)
O3—H46…O12 ^v	0.87 (3)	1.63 (3)	2.4989 (16)	175 (3)
C6—H6C····O9 ^{vi}	0.96	2.57	3.466 (2)	155
C11—H11···O6 ⁱⁱⁱ	0.93	2.59	3.322 (2)	136
C14—H14····O6 ^{vii}	0.93	2.48	3.199 (2)	134

C22—H22···O4 ^{vii}	0.93	2.47	3.367 (2)	163
C24—H24···O8 ^{viii}	0.93	2.53	3.415 (2)	159
C32—H32···O14 ^{ix}	0.93	2.57	3.289 (2)	135
С35—Н35…О7	0.93	2.51	3.3811 (19)	156
C17—H17A…O12	0.96	2.49	2.970 (2)	111

Symmetry codes: (i) -x+3/2, y-1/2, -z+1/2; (ii) -x+1/2, y-1/2, -z+1/2; (iii) -x+1/2, y+1/2, -z+1/2; (iv) -x+3/2, y+1/2, -z+1/2; (v) x, y, z-1; (vi) -x+1, -y+1, -z+1; (vii) x, y+1, z; (viii) x-1/2, -y+3/2, z-1/2; (ix) -x+1, -y+1, -z.

Fig. 1

